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Abstract—Homogenization is a mean field approach for the
determination of the effective properties of heterogeneous mate-
rials. Nevertheless further information about the field distribution
can be obtained such as second order moments. The use of
second order moments can notably improve the estimates of the
macroscopic behavior in the nonlinear case. This has been studied
mainly in the case of uncoupled behavior. We propose to define
second order moments in the case of coupled elasto-magneto-
electric behavior using homogenization tools. The resultsare
compared to the field fluctuations obtained from a Finite Element
model.

I. I NTRODUCTION

Homogenization is a modeling approach that enables to de-
termine the effective behavior of heterogeneous materials[1],
[2]. It makes use of the properties of the material constituents
and of a limited statistical description of its microstructure.
In most cases, and particularly for linear behavior, the de-
termination of mean fields per phase is sufficient to perform
the homogenization process. Nevertheless, further information
about the field distribution may be necessary in some cases,
particularly when dealing with nonlinear constitutive laws.

Information on field fluctuations can be obtained by deter-
mining second order moments. They can be estimated with
homogenization tools. This point has been deeply investigated
in the case of uncoupled (mechanical, electric, magnetic)
behavior (see for instance [3], [4], [5]). We propose to de-
fine second order moments in the case of coupled behavior.
Elasto-magneto-electric couplings are considered. The model
relies on a previous homogenization model based on a field
decomposition into several contributions depending on their
physical origin [6].

In the first part, elasto-magneto-electric constitutive laws
are briefly presented. In the second part, the determination
of second order moments of the fields is derived in the case
of coupled behavior. In the last part, this homogenization
approach is applied to a piezoelectric composite. The results
for second order moments are compared to Finite Element
simulations.

II. CONSTITUTIVE LAWS - HOMOGENIZATION

A. Elasto-magneto-electric materials

The constitutive law of elasto-magneto-electric materials
can be written in different ways, depending on the choice of
the independent variables betweenT the stress tensor andS

the strain tensor, betweenB the magnetic induction andH the
magnetic field, and betweenD the electric induction andE
the electric field. One possible choice is to regroupT, H and
E on one side (later referred to asY), and to regroupS, B
and D on the other side (later referred to asX). The linear
constitutive law reads:


T
H
E


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D


 (1)

whereC is the elastic stiffness tensor,� the magnetic reluc-
tivity tensor, � the inverse permittivity tensor,q the piezo-
magnetic tensor,e the piezoelectric tensor and� the magneto-
electric tensor. The constitutive law can be condensed into:

Y = L · X (2)

B. Homogenization model

Homogenization models have been mainly developed in
the framework of uncoupled behavior. A framework for the
homogenization of coupled behavior has been recently pro-
posed [6]. It is based on the decomposition of an-phasic
heterogeneous problem inton bi-phasic elementary inclusion
problems [7]. The coupled behavior is accounted for through
an appropriate decomposition of fields. The principle is to
decompose the fields deriving from a potential (S, H and E)
into several contributions, related to the physical originof the
field (Eq. 3). 





S= SC + S� + S�
H = HC + H� + H�
E = EC + E� + E� (3)

For example, the total strain tensorS can be decomposed into
an elastic strainSC caused by the stressT, superimposed to
a magnetism induced strainS� (also called magnetostriction
strain) related to the magnetic state, and to an electricity
induced strainS� (also called electrostriction strain) related
to the electric state. The use of this decomposition allows
the use of the uncoupled homogenization tools in order to
express localization operators (linking the local fields tothe
macroscopic ones). This scheme enables to define the effective
property tensor̃L:

Y = 〈Y〉 = 〈L · X〉 = L̃ · 〈X〉 = L̃ · X (4)

where the operator〈.〉 denotes an averaging operation over the
whole volume of the material.
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III. SECOND ORDER MOMENTS

The effective property tensor̃L of a composite material is
classically defined as the link between the macroscopic fields
Y and X (Eq. 4). But an energetic definition of̃L could
also be given, noting that, thanks to the proposed choice
of independent variables, the quantityY · δX represents the
energy variation. Eq. 5 expresses the macroscopic energy in
the composite as the average of the local energy over the
volume.

〈X · L · X〉 = X · L̃ · X (5)

Let now consider a small variation of the properties of the
constituents, while maintaining constant the macroscopicfield
X. Eq. 5 becomes:

〈(X + δX) · (L+ δL) · (X + δX)〉 = X ·
(L̃+ δL̃) · X (6)

Restraining Eq. 6 to first order terms leads to:

2 〈X · L · δX〉+ 〈X · δL · X〉 = X · δL̃ · X (7)

The first term in the left side member is equal to zero. Indeed
X ·L ·δX is equal toY ·δX that is the local variation of energy.
The field distribution verifies the minimum energy principle,
so that the corresponding macroscopic variation of energy is
equal to zero. Finally Eq. 7 becomes:

〈X · δL · X〉 = X · δL̃ · X (8)

The properties being uniform per phase, the averaging opera-
tion can be decomposed as follows:

n∑

i=1

fi 〈X · δLi · X〉i = X · δL̃ · X (9)

where the operator〈.〉i denotes an averaging operation over
the sole phasei andfi is the volumetric fraction of the phase
i. Thus, the second order moments per phase〈X ⊗ X〉i are
obtained by derivation of the effective property tensorL̃ with
respect to the phase properties.

〈X ⊗ X〉i =
1

fi
X ·

∂L̃
∂Li

· X (10)

IV. A PPLICATION TO PIEZOELECTRIC COMPOSITES

In order to validate the proposed approach, the homog-
enization results (based on Eq. 10) are compared to the
second order moments extracted from a Finite Element model.
The composite structure studied in the Finite Element model
is a sphere (piezolectric material 1) embedded in a cube
(piezolectric material 2). Both phases are polarized alongthe
z-axis. This composite is submitted to a macroscopic electric
inductionD along thez-axis and the macroscopic strainS is
imposed to zero. Several volumetric fractions of the inclusion
are studied. The homogenization model is performed using the
piezoelectric material 2 as reference medium in the elementary
inclusion problems (so-called Mori-Tanaka estimate).

The effective piezoelectric coefficients are plotted in Fig. 1
and the second order moments of the electric induction in Fig.
2. Homogenization and finite element results are close in both
cases.
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Fig. 1. Effective piezoelectric coefficients depending on the volumetric
fraction of the inclusions (phase 1).
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Fig. 2. Second order moments of the electric induction in phase 2 depending
on the volumetric fraction of the inclusions (phase 1).

V. CONCLUSION

Homogenization tools have been used to determine second
order moments in linear smart material composites. The main
advantage of such an approach is its computational time (ratio:
103) compared to full field models such as Finite Element
methods. The comparison to a Finite Element model for a
piezoelectric composite with matrix/inclusion microstructure
shows a satisfying agreement.
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